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A general formulation of linear input-output model is considered in the paper as a system of 
equations written in terms of free variables for any rectangular supply and use table given. This system 
spans the regular linear equations for material and financial balances with a batch of predetermined values 
for exogenous variables (net final demand and value added vectors). 

Variations in exogenous elements of input–output model lead to the changes of price and quantity 
proportions in the resulting supply and use table that are formally described by two nonlinear 
multiplicative patterns. It is shown how these patterns can be linearized and adjusted for evaluating the 
input–output model at constant prices and at constant level of production. 

The pattern for assessing at constant prices provides an exact identifiability of the model when the 
Leontief technical coefficients and the product-mix matrix are invariable. In contrast, the model based on 
other pattern is exactly identifiable when the Ghosh allocation coefficients and the product-mix matrix 
stay invariant. The regular (rectangular case) and supplementary (square case) solutions for both types of 
input–output models are obtained. Supplementary solutions are used to formulate generalized versions of 
Leontief demand-driven model and Ghosh supply-driven model. 

For symmetric input-output table, the properties of diagonal production matrix allow transforming the 
generalized versions of Leontief and Ghosh models into the “classical” input–output models. The 
equivalence of Leontief price model and Ghosh supply-driven model as well as the equivalence of 
Leontief demand-driven model and Ghosh quantity model is proven. It is to be noted that relevant 
formulas do demonstrate a remarkable set of duality properties. 
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1. A general formulation of linear input–output model 

The general linear input–output model of an economy with N of products (commodities) and M 

industries (sectors) for the certain time period leans on a pair of rectangular matrices, namely 

supply (production) matrix X and use for intermediates (intermediate consumption) matrix Z of 

the same dimension NM both. In mathematical notation, the model includes the vector equation 

for material balance of products’ intermediate and final uses, i.e., 

yZeXe   ,                                                         (1) MM

and the following vector equation for financial balance of industries’ intermediate and primary 

(combined into value added) inputs: 

vZeXe   NN

Ne M

                                                          (2) 

where  and e  are N1 and M1 summation column vectors with unit elements, y is a column 

vector of net final demand with dimensions N1, and v is a column vector of value added with 
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dimensions M1. Here putting a prime after vector’s (matrix’s) symbol denotes a transpose of 

this vector (matrix). 

“One of the major uses of the information in an input–output model is to assess the effect 

on an economy of changes in elements that are exogenous to the model of that economy” (Miller 

and Blair, 2009, p. 243). To measure the changes mentioned above, in most practical cases there 

usually is the supply and use table for economy under consideration for the same time period 

(say, period 0) compiled from available statistical data. This table includes the production matrix 

X0 and intermediate consumption matrix Z0 with dimensions NM, (N1)-dimensional column 

vector of net final demand y0 , and (M1)-dimensional column vector of value added v0 (see 

Eurostat, 2008). Note that the equations (1) and (2) are exactly met for the initial table 

components. 

2. The price and quantity transformations of variables in the input–output model 

With accordance to the quotation above, the main aim of constructing input–output models is to 

assess an impact of the exogenous changes (either absolute or relative) in net final demand and, 

by virtue of symmetry in the balance equations under consideration, the exogenous changes in 

gross value added on simultaneous behavior of the economy. Balance models do not usually 

reflect the true causes of  the certain changes in final demand or value added, so the response of 

the economy to any exogenous disturbance is evaluated in the mode of getting answers to 

questions like “what would happen if ...? ”. 

In principle, variations in exogenous elements of the input–output model (1), (2) lead to the 

changes of price and quantity proportions in the resulting supply and use table. The most general 

way to describe an impact of these changes on matrices X and Z is as follows: 

0XQX PX X  0ZQPZ ZZ ,                 

where  and  are NM-dimensional matrices of the relative price indices for products, Q  XP ZP X

and  are NM matrices of the relative quantity (physical volume) indices for industries of the ZQ

economy, and the character “  ” denotes the Hadamard’s (element-wise) product of two matrices 

with the same dimensions.  

One can assume that in market economy PPP ZX  , and Q QQZX   on the current level 

of production. Besides, it is quite natural to propose also that the price on certain product does 

not vary along the row of producing-and-consuming industries, i.e.,  for all m = 1M at nnm pp 

n = 1N where the character “  ” between the lower and upper bounds of index’s changing range 

means that the index sequentially runs all integer values in the specified range, and, moreover, 

that the production quantity index for the certain industry’s output and intermediate consumption 
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mnm qis keeping invariable through all products produced and consumed, namely, q   for all 

n = 1N at m = 1M .  

Thus, matrices P and Q can be represented respectively as  and QMepP  qe  N  

where p is a column vector of the relative price indices on products with dimensions N1, q is a 

column vector of the relative quantity indices for industries with dimensions M1, and the 

character “  ” denotes the Kronecker product for two matrices. 

Transforming the above statements into regular matrix notation gives two nonlinear 

multiplicative patterns 

qXp ˆˆ 0X  ,                 qZpZ ˆˆ 0                                                  (3) 

where putting a “hat” over vector’s symbol (or angled bracketing around it) denotes a diagonal 

matrix with the vector on its main diagonal and zeros elsewhere (see Miller and Blair, 2009, 

p. 697). The patterns (3) provide the combined price and quantity description of an economy 

response to exogenous changes in the input–output model’s variables, inter alia, in net final 

demand and in gross value added. Note that vectors p and q in (3) cannot be estimated 

unambiguously because the patterns (3) are hyperbolically homogeneous, since 0XqpX   and 

cc qpqp   for any nonzero scalar c. 

Nevertheless, evaluations of input–output model (1), (2) in terms of the production quantity 

changing at constant prices on the products  and/or in terms of price changing at constant level of 

production in the industries are of great theoretical and practical interest.  

3. Evaluating the input–output model at constant prices 

In a case of constant prices on products we have NEp ˆ

X

 where EN is identity matrix of order N, 

so the nonlinear multiplicative patterns (3) can be rewritten in linear form, namely 

qX ˆ0 ,                 qZZ ˆ0 .                                                 (4) 

According to the first equation (4), the row vector of industry outputs is equal to 

00 ˆ Xeqq NXeXe NN   from which 

XeXe NN  1
0q ˆ  

where the obvious commutativity property of diagonal matrices is used. Substituting the latter 

expression in multiplicative patterns (4) gives two matrix-valued linear functions 

XeGXe NN XeXqXX N 1
000 ˆ ,                                         (5) 

XeAXe NN XeZqZZ N 1
000 ˆ                                           (6) 

with vector of industry outputs Xe N  as their mutual argument. Note that matrix 

https://www.lingvolive.com/en-us/translate/ru-en/mutual
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1
00

 XeX N

XN

G  is known in special literature as product-mix matrix (see Eurostat, 2008) with 

shares of each product in output of an industry in a column. The matrix G in (5) provides a 

linkage between production matrix X and its column marginal totals. 

Function (6) establishes a linear dependence of intermediate consumption matrix Z from 

the industry outputs e , and so it can be classified as the matrix-valued linear cost function. 

Matrix 
1

00

 XeZ NA  is widely known under the name of (Leontief) technical coefficients 

matrix (see, e.g.,  Miller and Blair, 2009). 

Substituting multiplicative patterns (4) in the input–output model (1), (2), we obtain 

  yqZX  00 ,                                                            (7) 

  vqvq  00 ˆZXe  0N                                                      (8) 

respectively. Further, as it follows from (5) and (6), matrices A and G stay invariant in the 

process of evaluating the input–output model at constant prices. That is the reason why below we 

will call the linear equations (7) and (8) by the model AG. 

4. Evaluating the input–output model at constant level of production 

Assessing the model (1), (2) at constant level of production in the industries (at  where EM 

is identity matrix of order M) leads to linear patterns 

MEq ˆ

X 0ˆXp ,                 0ˆZpZ  .                                                  (9) 

In accordance with the first equation (9), the column vector of product outputs is equal to 

peXe MM 00 XpXe M ˆ  from which 

MM XeeX
1

0


p̂  . 

Substituting the latter expression in multiplicative patterns (9) gives two other matrix-valued 

linear functions 

HXeX M
0

1
eXXeXpX MM 00ˆ ,                                       (10) 

BXeZ M
0

1
eXXeZpZ MM 00ˆ                                         (11) 

with vector of product outputs  as their MXe mutual argument. Note that matrix 

0
1

0 XeX
 M

MXe

H  is known in literature as market shares matrix (see Eurostat, 2008) with 

contributions of each industry to the output of a product in a row. The matrix H in (10) provides a 

linkage between production matrix X and its row marginal totals. 

Function (11) establishes a linear dependence of intermediate consumption matrix Z from 

the product outputs , and so it can be also classified as the matrix-valued linear cost 

https://www.lingvolive.com/en-us/translate/ru-en/mutual
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function. Matrix 0

1

0 ZeXB
 M  is known under the name of (Ghosh) allocation coefficients 

matrix (see, e.g.,  Miller and Blair, 2009). 

Finally, substituting multiplicative patterns (9) in the input–output model (1), (2), we have 

  ypype  0ˆMZX  00 ,                                                    (12) 

  vpZX  00                                                             (13) 

respectively. As it follows from (10) and (11), matrices B and H stay invariant in the process of 

evaluating the input–output model at constant level of production. That is the reason why below 

we will call the linear equations (12) and (13) by the model BH. 

5. Regular and supplementary solutions for the model AG 

Consider some operational opportunities in obtaining solutions for the model AG (7), (8) in the 

cases of evaluating a response of the economy to exogenous changes in the net final demand 

vector  with dimensions N1 or in the value added vector 0 0vvvyyy    

0vvv

 with 

dimensions M1. Here it is assumed that “disturbed” vectors  and  do not have any zero 

components. 

y v

The material balance model (7) contains N linear equations with M scalar variables q, 

whereas the financial balance model (8) includes M linear equations with the same M unknowns. 

Hence, in a very general case N  M one can assess a response of the economy only to exogenous 

change in the value added vector    by resolving the equation (8) written as 

   vq0 vqZXe 00 ˆN  with respect to the column vector of the relative quantity indices for 

industries, namely 


 vvq 1
0ˆ

0vvv  

0yyy  

.                                                                (14) 

It should be noted that the solution (14) is valid at any numbers of products and industries 

in the economy. Nevertheless, this regular solution is trivial because a response of model AG to 

the disturbance  comes to the alternate multiplying the columns of production and 

intermediate consumption matrices X0 and Z0 on the growth indices of value added through all 

industries at constant prices on the products. 

However, at N = M = K a choice of alternative exogenous condition is also feasible in 

finding a supplementary solution for the model AG. Under the exogenous final demand condition 

, the equation (8) written as     yqZX 00  can be resolved with respect to the 

column vector of the relative quantity indices for industries, namely 

  
 yZX 1

00q ,                                                        (15) 
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00 ZXof course, if an inverse of the square (at N = M = K) matrix   exists as it is expected to be. 

(Note that initial production matrix X0 usually has the dominant main diagonal.) The 

supplementary solution (15) is valid only if the values of N and M coincide, but it is not trivial in 

contrast to regular solution (14). 

6. Regular and supplementary solutions for the model BH 

In its turn, consider operational opportunities in getting solutions for the model BH (12), (13) in 

the cases of evaluating a response of the economy to exogenous changes in the final demand 

vector  or in the value added vector 0yyy   0vvv  

0yyy

. 

The material balance model (12) contains N linear equations with N scalar variables p, 

whereas the financial balance model (13) includes M linear equations with the N unknowns. 

Hence, in a general case N  M one can evaluate a response of the economy only to exogenous 

change in the final demand vector    by resolving the equation (12) written as 

   yp0 ypeZX 00 ˆM  with respect to the column vector of the relative price indices on 

products, namely 


 yyp 1
0ˆ

0yyy  

.                                                                (16) 

The regular solution (16) is valid at any numbers of products and industries in the 

economy. Nevertheless, this solution is trivial because a response of model BH to the disturbance 

 comes to the alternate multiplying the rows of production and intermediate 

consumption matrices X0 and Z0 on the value indices of final demand through all products at 

constant level of production in the industries. 

However, at N = M = K a choice of alternative exogenous condition is also feasible in 

finding a supplementary solution for the model BH. Under the exogenous value added condition 

, the equation (13) written as 0vvv      vpZ 00X  can be resolved with respect to the 

column vector of the relative price indices on products, namely 

  
 vZX 1

00

00 ZX

p ,                                                        (17) 

of course, if an inverse of the square (at N = M = K) matrix   exists. (Recall that initial 

production matrix X0 usually has the dominant main diagonal.) The supplementary solution (17) 

is valid only if the values of N and M coincide, but in contrast to the regular solution (16), it is 

not trivial. 

It is interesting here to pay attention to the fact that models AG and BH do demonstrate a 

remarkable set of duality properties in pairwise comparison of the regular solutions (14) and (16) 
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as well as the supplementary solutions (15) and (17) at N = M = K. 

7. Generalizing Leontief demand-driven model and Ghosh supply-driven model 

The model AG and its supplementary solution (15) together with the resulting disturbances in 

production and intermediate consumption matrices (4) describe an impact of exogenous changes 

in final demand in terms of the production quantity changing at constant prices on the products. 

The model BH and its supplementary solution (17) together with the resulting disturbances in 

production and intermediate consumption matrices (9) characterize an impact of exogenous 

changes in value added in terms of price changing at constant level of production in the 

industries. 

Model AG at N = M = K can be considered as a generalized version of well-known Leontief 

demand-driven model (see Miller and Blair, 2009, Section 2.2.2). It serves to assess an impact of 

exogenous (absolute or relative) changes in final demand on the economy at constant prices. 

Indeed, as it follows from (4), the main fundamentals of model AG are  and qXX ˆ0 qZZ ˆ0  

where  

       
 yeX

1
0

1
K




  BHyBHeXyZXq
1

0
1

00 K                 (18) 

according to (15). Total requirements matrix, which links the vector of product outputs with the 

final demand vector, can be derived as follows: 

       
 yXZ

11
00




  EyXZXyZXXqXXe
11

000
1

0000 KK .       (19) 

Model BH at N = M = K can be classified as a generalized version of Ghosh supply-driven 

model (see Miller and Blair, 2009, Section 12.1). It helps to evaluate an impact of exogenous 

(absolute or relative) changes in value added on the economy at fixed production scales (at 

constant level of production). As it follows from (9), the main fundamentals of model BH are 

 and Z  where 0 0ˆZpˆ XpX 

       
  vXe

1
0

1
K




  AGvAGXevZXp
1

0
1

00 K                 (20) 

in accordance with (17). A Ghosh analogue of total requirements matrix, which links the vector 

of industry outputs with the value added vector, can be derived as follows: 

         
 vXZ

11
00




  EvXZXvZXXpXeX
11

000
1

0000 KK .    (21) 

Here it is worth to mention the duality properties of models AG and BH again, because a 

response of model AG to the disturbance of the final demand coefficients 


yeX
1

0 M  is 

described in the equation (18) by matrices H and B, whereas a response of model BH to the 

disturbance of the value added coefficients 
 vXe

1
0N  is represented in the equation (20) by 
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matrices G and A. 

8. The Leontief and Ghosh models for symmetric input–output table 

Vectors q and p are defined in Section 7 under an assumption that all the matrices in (18) – (21) 

are square (at N = M = K). In addition, let the initial production matrix X0 be a diagonal one as in 

a symmetric input–output table. Then the generalized versions of Leontief and Ghosh models 

considered above can be easily led to a “classical” view.  

For diagonal matrix X0 of order K, 

KK eXXe 00 

KXe

XX 00  .                                               (22) 

The most famous Leontief formula can be obtained using (18), (22) and some algebraic 

properties of diagonal matrices along the sequential transformations of the product outputs vector 

 as follows:  

     




  yXeZXyZXXqXXe
11

000
1

0000 KK   
 yAE 1

K          (23) 

where A is the (Leontief) technical coefficients matrix. 

Its analogue for Ghosh supply-driven model can be easily derived in the similar manner, 

using (20) and then (22) along the sequential transformations of the industry outputs vector X Ke  

as follows: 

     




  veXZXvZXXpXeX
11

000
1

0000 KK   
 vBE 1

K        (24) 

where B is the (Ghosh) allocation coefficients matrix. 

It is to be emphasized that direct putting (22) into the main statement for generalized 

version of Ghosh supply-driven model (20) gives well-known formula 

      
  vXe

1

0
1

K



  AEvZXevZXp

1

00
1

00 KK                   (25) 

for so-called Leontief price model (see Miller and Blair, 2009, p. 44). Thus, in the case of a 

symmetric input-output table (when X0 is diagonal matrix) the Ghosh supply-driven model 

coincides with the Leontief price model (see Dietzenbacher, 1997). 

It can be shown in similar manner that the Leontief demand-driven model serves as the 

Ghosh quantity model. Indeed, direct substituting (22) into the main statement for generalized 

version of Leontief demand-driven model (18) gives 

      
 yeXB

1

0
1

K



  EyZeXyZXq

1

00
1

00 KK .                 (26) 

It is appropriate to mention that all formulas obtained above in this and previous section 

demonstrate a remarkable set of duality properties, especially in pairwise comparison of (19) and 

(23), (21) and (24), (23) and (25), (24) and (26). 

https://www.lingvolive.com/en-us/translate/ru-en/especially
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9. Concluding remarks 

A general formulation of linear input-output model is considered in the paper as a system of 

equations written in terms of free variables for any rectangular supply and use table given. This 

system spans the regular linear equations for material and financial balances with a batch of 

predetermined values for exogenous variables (net final demand and value added vectors). 

Variations in exogenous elements of input–output model lead to the changes of price and 

quantity proportions in the resulting supply and use table that are formally described by the 

nonlinear multiplicative patterns (3). These patterns can be adjusted for evaluating the input–

output model at constant prices in linear form (4) and at constant level of production in linear 

form (9). 

The proposed approach for assessing at constant prices provides an exact identifiability of 

the model within rectangular and square formats in the circumstances when the Leontief 

technical coefficients and the product-mix matrix are invariable. Under prescription for level of 

production to be constant, the input–output model is exactly identifiable within both formats 

when the Ghosh allocation coefficients and the product-mix matrix stay invariant. The regular 

and supplementary solutions for models AG and BH are obtained in (14) – (17). Square models 

AG and BH that are based on supplementary solutions (15) and (17) can be classified as 

generalized versions of Leontief demand-driven model and Ghosh supply-driven model 

respectively. 

In a case of symmetric input-output table, the properties of diagonal production matrix 

allow transforming the generalized versions of Leontief and Ghosh models into the “classical” 

input–output models. In this context, the equivalence of Leontief price model and Ghosh supply-

driven model as well as the equivalence of Leontief demand-driven model and Ghosh quantity 

model is proven. It is interesting to note that relevant formulas do demonstrate a remarkable set 

of duality properties. 
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	where  and  are N(M-dimensional matrices of the relative price indices for products,  and  are N(M matrices of the relative quantity (physical volume) indices for industries of the economy, and the character “ ( ” denotes the Hadamard’s (element-wise) product of two matrices with the same dimensions. 

